
Toward a Framework for Evaluating Extreme Programming

Laurie Williams1, William Krebs2, Lucas Layman1, Annie I. Antón1
1North Carolina State University, Department of Computer Science

{lawilli3, lmlayma2, aianton}@ncsu.edu
2IBM Corporation, krebsw@us.ibm.com

Abstract

Software organizations are increasingly adopting
the development practices associated with the Extreme
Programming (XP) methodology. Most reports on the
efficacy of these practices are anecdotal. This paper
provides a benchmark measurement framework for
researchers and practitioners to express concretely the
XP practices the organization has selected to adopt
and/or modify, and the outcome thereof. The framework
enables the necessary meta-analysis for combining
families of case studies. The results of running
framework-based case studies in various contexts will
eventually constitute a body of knowledge of systematic,
empirical evaluations of XP and its practices. We
present the initial validation of our XP evaluation
framework based upon a year-long study of an IBM team
that successfully adopted a subset of XP practices
appropriate for their team culture and their project
characteristics. Our findings suggest that agile/XP
methodologies can be successfully adopted in
environments reliant on traditional software methods.

1. Introduction

Often compelling empirical evidence is not available

when a technology is introduced. Typically, such
evidence evolves with the rate of adoption of the
technology [17]. For example, strong empirical evidence
of the value of the Software Capability Maturity Model
(CMM) [35] came after wide initial adoption [17].
Similarly, Extreme Programming (XP) [8] is becoming
increasingly popular. However, the evidence of its
efficacy is still predominantly based upon experience
reports. Anecdotes of industrial teams’ successes with
partial or full implementations of XP are abundant [29,
30, 47]. However, organizations and researchers need a
framework to assess empirically XP’s strengths and
weaknesses in a variety of contexts. Examining the

efficacy of XP is a contemporary software engineering
research challenge.

Sim et al. challenged the software engineering
community to create benchmarks, or a set of tests used to
compare the performance of alternative techniques [45].
In this paper, we provide a benchmark for expressing the
XP practices an organization has selected to adopt and/or
modify, and the outcome thereof. This benchmark,
called the XP Evaluation Framework (XP-EF), is
designed for use throughout development by agile [16]
teams, and is comprised of metrics that are focused,
concise, and can be collected by a small team without a
dedicated metrics specialist. The XP-EF is comprised of
three parts: XP Context Factors (XP-cf), XP Adherence
Metrics (XP-am) and XP Outcome Measures (XP-om),
as shown in Figure 1. Use of this framework enables the
necessary meta-analysis for combining families of case
studies. The results of running XP-EF-based case studies
by our and other research teams in various contexts will
eventually constitute a body of knowledge of systematic,
empirical evaluations of XP and its practices. This body
of knowledge will be valuable to organizations awaiting
stronger evidence of the efficacy of the XP practices
prior to adoption.

Figure 1. The structure of the XP-Evaluation
Framework

In the XP-EF, researchers and practitioners record

essential context information about a project via the XP
Context Factors (XP-cf). Factors such as team size,
project size, criticality, and staff experience can help
explain variations in the results of applying the practices.

The second part of the XP-EF is the XP Adherence
Metrics (XP-am). Rarely, if ever, do software

XP Evaluation Framework (XP-EF)

XP-cf
Context
Factors

XP-am
Adherance

Metrics

XP-om
Outcome
Measures

development teams fully exercise all XP practices in a
“pure” form [17]; some employ only a few practices.
The XP-am enables one to express concretely and
comparatively the practices a team utilizes. By
examining multiple XP-EF case studies, the XP-am also
allows researchers to investigate the interactions and
dependencies between the XP practices and the extent to
which the practices can be separated or eliminated.

Part three of the XP-EF is the XP Outcome
Measures (XP-om); it provides researchers and
practitioners a means to assess and report a team’s
outcome from using a full or partial set of XP practices.
The XP-om consists of traditional external software
development metrics, such as productivity and quality.
Ideally, a team (comprised of researchers and/or
practitioners) performing a case study will have a
baseline product that can be used for comparison.

The three parts of the XP-EF work together to enable
the examination of the relationships between the context,
the practices, and the team’s outcome, leading to the
following general contention:

The use of {XP practices recorded by the XP-
am} leads to {results recorded by the XP-om}
when used by teams that operate within {context
recorded by the XP-cf}.
In this research, we utilized the “industry-as-

laboratory” [37] approach in which software engineering
researchers worked closely with industry to create and
evaluate solutions [37]. In a year-long, “in-vivo” (in the
field, under normal conditions) [3] case study, the XP-EF
was applied within an IBM software development team.
This seven-person IBM team develops Servlet/XML
applications for a toolkit that other IBM teams utilize to
create products for external customers. The team
adopted and sustained the use of a subset of XP practices
deemed “safe” and appropriate for their team culture and
project characteristics. This case study is the first of a
family of XP-EF case studies, providing initial validation
of the XP-am metrics. Additionally, it demonstrates how
to conduct an XP assessment utilizing the XP-EF
framework.

The remainder of this paper is as organized as
follows. Section 2 discusses measurement frameworks
and surveys related XP research. Section 3 sets the
context for our IBM case study. Section 4 presents the
results of the case study. Section 5 presents the analysis
of our results and our plans for future work.

2. Background and related work

In this section, we discuss existing software

measurement and assessment strategies, frameworks and
metrics. We then provide a survey of prior XP studies.

2.1. Strategies and frameworks

Software measurement is imperative for companies

competing in a rapidly-changing environment. McGarry
proposes several project management strategies to
establish a customized measurement framework [31].
Grady offers similar strategies tailored to customer
satisfaction, defect prevention, analysis, and removal
[20]. The ISO/IEC 14598 standard [22] establishes
guidelines for measuring and assessing software quality.

Several frameworks for planning the collection of
software metrics exist, including the Goal-Question-
Metric (GQM) approach [1, 5], the Quality Improvement
Paradigm (QIP) [4], the Model, Measure, and Manage
Paradigm (M3P) [34], and the Measurement Information
Model (MIM) [31]. These models are process-
independent and may be used to establish systems of
software measurement tailored to individual projects.
Kitchenham et al. [25] proposed a detailed set of
guidelines for designing, collecting data, analyzing, and
reporting the results of empirical studies. The use of
their guidelines is purported to improve the quality of
individual studies and to increase the likelihood that
meta-analysis can be used to combine the results of
multiple related studies. These guidelines have been
incorporated in the composition of the XP-EF.

Williams et al. [51] introduced a metric suite for
empirically assessing an agile methodology’s
effectiveness. Several hypotheses and metrics are
proposed for productivity, cycle time, externally-visible
pre- and post-release quality, responsiveness to customer
change, internal code structure, and job satisfaction. This
prior work serves as a foundation for the framework
proposed herein.

2.2. Metrics and comparisons

The XP-EF is a compilation of validated and

proposed metrics. Metric validation requires the
convincing demonstration that (1) the metric measures
what it purports to measure and (2) the metric is
associated with an important external metric, such as
field reliability, maintainability, or fault-proneness [18].
Schneiderwind proposes that six criteria be applied when
validating software metrics: association, consistency,
discriminative power, tracking, predictability, and
repeatability [42]. The XP-om utilizes the CK suite of
object-oriented metrics as defined by Chidamber and
Kemerer [14]. These metrics have been repeatedly
correlated with fault proneness in industrial projects.
The consistency of these findings varies depending on
the programming language under study [46] and
therefore, the metrics are still open to criticism [15].

In empirical studies, comparisons are informative.
For example, a new project’s measures can be compared

against a prior project’s measures within the same
organization. Alternatively, comparisons can be made to
industry standards and/or benchmarks. Jones has
compiled data from many software organizations and
provides benchmarks, best practices, and statistics for a
range of software development topics [23].

2.3. XP studies

Practitioners and researchers have reported empirical

and anecdotal studies of the XP methodology. Many,
including the originator of XP, Kent Beck, contend that
strict use of the specific XP practices is less important
than embracing the methodology’s four values:
communication, feedback, simplicity, and courage [8].
Robinson and Sharp [40] performed a participant-
observer empirical study based on ethnography. The
researchers immersed themselves and participated with
an XP team to examine the relationship between the 12
XP practices and the XP values. Robinson and Sharp
concluded that the practices can be used to create a
community that supports and sustains a culture that
includes the XP values. However, the specific 12
practices are not the only means for achieving the same
underlying values; teams that adopt a subset of the
practices can produce a similar culture [40]. There is a
reflexive relationship whereby “the practices create and
sustain values and values support, shape and frame
practices” [40]. In our framework, we utilize the
observable use of the XP practices to assess the extent to
which a team has embraced the core XP values.

Companies are adopting XP in varying extents.
Rasmussen describes a successful partial adoption of XP
at TransCanada Pipelines Limited for the development of
a new, web-based software product and for the rewrite of
a legacy system [38]. Schuh describes a study in which
XP was adopted to recover an ailing project [43] at
Thoughtworks. Grenning provides lessons learned from
the introduction of XP into a process-intensive
organization [21] at a large company developing safety-
critical systems. Lippert et al. suggest ways to
successfully adapt and extend XP for complex projects
based on experiences from five projects [28] at IT
Workplace Solutions. Murru et al., describe a corporate
research study in which a team of developers adopted
different subsets of XP practices on two separate projects
[33]. In the first of these two projects, the team
eliminated the planning game practice and partially
adopted the simple design paradigm; this project lacked
process control and coordination. Comparatively, in the
second project, the team adopted both the planning game
and simple design and were successful. While practical
and informative, these experience reports offer little
formal validation to support claims of high customer

satisfaction, higher quality projects, and steady or
improved schedules by XP projects.

In an XP university case study, Müller et al. found
that pair programming, iteration planning, and test-driven
development had mixed benefits and implementation
difficulties. XP was best suited for small teams [32];
quantitative data and a replicable study will aid in
substantiating these claims. Reifer reported the results of
an industrial survey conducted to determine if agile
methods/XP reduce costs and improve development time
[39]. Results from 14 firms spanning 31 projects were
collected. Most projects were characterized as small
pilot studies, for internal use only, and of generally low
risk. Most projects had average or better than average
budget performance and schedule adherence. Projects in
the software and telecommunications industry reported
product quality on par with nominal quality ratings; e-
business reported above par quality ratings; and the
aerospace industry reported a below par quality rating for
their agile/XP projects.

Poole and Huisman integrated several XP practices
into an organization’s maintenance effort for a
middleware project [36]. They observed a steady
increase in the average number of closed bugs. The use
of XP helped improve process visibility and discipline,
and gathering metric results proved important. While
quantitative results are limited, this study offers
important first steps toward assessing the impact of XP
practices. Wood and Kleb analyzed the productivity of
an XP product [52]. They performed an experiment as
part of a pilot study at NASA to assess XP in a mission-
critical environment. The team used a new programming
language and the XP practices to produce a project that
evaluated the performance of a model for solving a
mathematical problem. Taking into consideration a
reduction in code size due to refactoring and use of a
more concise programming language, the XP approach
was approximately twice as productive as past similar
projects. These results are intriguing, but data from larger
teams in a less unique context is necessary before general
conclusions can be drawn. Finally, Bowers et al. describe
a study at Motorola where XP was partially adopted for
developing mission-critical software [12]. The team
developed a new release of a product, which entailed
significant changes to a legacy code base. They observed
increased productivity, higher velocity, and lower defect
density compared to company averages. We envision
researchers structuring case studies such as these using
the XP-EF framework in the future.

3. IBM case study

Experimentation in software engineering is

challenging. Formal, controlled experiments, such as
those conducted with students or professionals, over

relatively short time periods are often viewed as
“research in the small” [19]. These experiments offer the
ability to produce statistically significant results yet may
suffer from external validity limitations. Alternatively,
case studies can be viewed as “research in the typical”
[19]. Concerns with case studies involve the internal
validity of the research [13] because the baseline and
new treatments generally are not identical projects and/or
teams, and case studies are difficult to replicate [53].
Finally, case studies seldom yield statistically significant
results due to a small sample size. Nevertheless, case
studies are valuable because they involve factors that
staged experiments generally do not exhibit, such as
scale, complexity, unpredictability, and dynamism [37].
Researchers confidence in a theory increases when
similar findings emerge in different contexts. By
performing multiple case studies and/or experiments and
recording the context variables of each case study,
researchers can build knowledge through a family of
empirical assessments. Replication addresses threats to
experimental validity [6].

In this paper, we provide initial validation of the XP-
EF and add to the knowledge of XP via a case study with
an IBM development team in the United States. In our
research, we compare the second and third releases of a
product, heretofore referred to as the “old release” and
the “new release” respectively. In the old release, the
team began their initial adoption of XP practices. The
team then increased and stabilized their XP adoption in
the new release. This case study will be described in
terms of the XP-EF. Detailed instructions and templates
for measuring and reporting the XP case study data via
XP-EF Version 1.2 have been documented by the authors
of this paper [49] to aid other researchers in replicating
our case studies.

3.1. XP-cf: Context factors

Drawing conclusions from empirical studies in

software engineering is difficult as the results of any
process largely depend upon the relevant context
variables. One cannot assume a priori that a study’s
results generalize beyond the specific environment in
which it was conducted [6]. Therefore, recording an
experiment’s context factors is essential for fully
understanding the generality and utility of the
conclusions as well as the similarities and differences
between the case study and one’s own environment.

Software engineering has no well-defined standards
for determining what contextual information should be
recorded [25]. Jones [23] states that software projects
can be influenced by as many as 250 different factors,
but that most projects are affected by 10-20 major issues.
He organizes key factors to be accounted for in every
assessment into six categories: software classification,

sociological, project-specific, ergonomic,
technological, and international. The XP-EF
framework templates are correspondingly organized into
these six categories, though we modify the last factor
(international) to geographical. We also include
developmental factors that use a risk-driven approach to
determine whether a project would be most successful
using an agile or plan-driven approach. In this
subsection, we complete the XP-cf templates with data
from the IBM case study.

Software classification. According to Jones,
projects can be classified as one of six software types:
systems (used to control physical devices); commercial
(leased or marketed to external client); information
systems (for business information); outsourced
(developed under contract); military; or end user (private,
for personal use). The IBM team developed software
under contract for another IBM organization that
ultimately marketed the product to external customers.
We thus classify this project as outsourced software.

Sociological. Team conditions for both releases are
shown in Table 1. Personnel is often considered the most
prominent risk factor in software development [10],
therefore, is it important to capture relevant information
about team makeup. Sociological factors capture the
development experience of the personnel, as well as their
knowledge of the problem domain.

Table 1. Sociological factors

Context Factor Old New
Team Size (Develop) 11 7
Team Education
Level

All: Bachelors
Two: Masters

All: Bachelors
Two: Masters

Experience Level of
Team

20 years: 2
10 years: 3
<5 years: 2
Interns: 4

20 years: 1
10 years: 3
<5 years: 1
Interns: 1

Domain Expertise High
Language Expertise High
Experience Proj Mgr High
Specialist Available GUI Designer
Personnel Turnover 22% 36%
Morale Factors Manager change

As shown in Table 1, the new release had a smaller

team. XP and all agile methodologies rely upon tacit
knowledge transfer to alleviate the challenges of
personnel turnover. The turnover rate was calculated by
adding the number of people who joined or left the team
and dividing by the team size at the end of the release.
Table 1 also classifies their years of experience. The
team members are comparable; four left, including two
agile veterans with high domain knowledge, but the
remaining team members were the same.

Project-specific. Projects of varying size and scope
are subject to differing risk factors that may substantially
affect development quality and schedule, making it
necessary to record this context information. Table 2
compares the project-specific factors for the two releases.
Based upon the number of new classes, methods, and
lines of code (LOC), the new release is approximately
half the size of the old release. In the Table 2, KLOEC
are thousands of lines of executable (non-blank, non-
commented) code. The team under study was
responsible for the Component KLOEC, which this
shipped as part of a larger product, the System KLOEC.

Table 2: Project-specific factors

Context Factor Old New
New & Changed User
Stories

125 60

Domain Web Web
Person Months 95.5 28.8
Elapsed Months 10 5
Nature of Project Enhancement
Constraints Partially date constrained
New & Changed Classes
Total Classes

203
395

139
431

New & Changed Methods
Total Methods

1,110
3,229

486
3,715

New or Changed KLOEC 19.2 9.8
Component KLOEC 38.8 42.8
System KLOEC 231.2 240.1

Ergonomic. The physical working environment can

have direct impact on communication flow and overhead.
This is particularly important to XP’s core values of
communication and feedback. Table 3 documents the
projects’ ergonomic factors. Because both the old and
new releases had the same conditions, no comparison is
made. Ideally, an XP team has an open space office
environment. The IBM team sat in one aisle of cubicles
with room for two people to pair program. A white noise
generator protected other development groups from the
distractions of talking pairs. However, these white noise
generators might also impede peripheral information
between sets of pairs. Cockburn [16] and others
emphasize the importance of this peripheral information
flow. The IBM team, however, was unable to modify
their facility.

Table 3: Ergonomic factors

Physical Layout Cubicles large enough to allow
pair programming

Distraction level of
office space

Low. White noise generators,
semi-private cubicles

Customer
Communication

E-mail, chat programs, phone,
and databases

Technological. General software development tools
and practices, such as code inspections, project
management, and 4th generation languages, can have a
dramatic effect on project productivity and quality.
While the XP-am captures the use of XP practices, it is
important to document other technological influences on
a project’s outcome as well. During the three years prior
to the old release, the IBM team had used successfully a
blend of waterfall phases and informal small team
practices that resembled those of XP. The team culture
was small, informal, skilled, and adverse to heavy
process. Due to their past success and their aversion to
heavy process, the team often omitted heavyweight
waterfall-development practices, including formal UML
design documents and formal code inspections. In the
new release, the team was more agile and adopted more
of the XP practices. The project environment was
marked by constraints that limited the team’s ability to
adopt all 12 XP practices to their full extent, as discussed
in Section 4. The team’s technology factors are
summarized in Table 4.

Table 4: Technology factors

Context Factor Old New
Software Develop-
ment Methodology

Waterfall, with
XP practices

Primarily XP

Project
Management

Planning Game
Gantt charts

Planning Game

Defect Prevention
& Removal
Practices

Design Reviews Pair Program,
Customer Test,
Unit Test

Language Java Java
Reusable Materials XML test data XML test data,

IDE techniques

Geographical. Team location and customer

location may greatly impact the feedback cycle length
during software development. Table 5 documents the
geographical factors. Because both the old and new
releases had the same conditions, no comparison is made.

Table 5: Geographic factors

Team Location Collocated
Customer
cardinality and
location

Multiple; remote; multi-national,
several time zones, some very far
away

Supplier cardinality
and location

Multiple; both remote and local;
two time zones

Developmental. Boehm and Turner acknowledge

that agile and plan-driven methodologies each have a role
in software development and suggest a risk-based
method for selecting an appropriate methodology [9, 11].
Their five project factors (team size, criticality, personnel

understanding, dynamism, and culture) aid in selecting
an agile, plan-driven, or hybrid process. Criticality
indicates the magnitude of loss due to a defect, ranging
from loss of many lives to loss of comfort. Personnel
indicates the team’s ability, ranging from ability to
perform procedural methods to ability to revise a method
in an unprecedented situation. Dynamism is a measure
of requirements volatility, and culture indicates the
attitude of the team toward change.

These factors are graphed on a polar chart’s five
axes, as shown in Figure 2. When a project’s data points
for each factor are joined, shapes distinctly toward the
graph’s center suggest using an agile method. Shapes
distinctly toward the periphery suggest using a plan-
driven methodology. More varied shapes suggest a
hybrid method of both agile and plan-driven practices.
The IBM development team’s factors are shown in
Figure 2. The shape indicates that a hybrid “mostly agile,
somewhat plan-driven method” is appropriate, which is
what the team followed. The developmental factor that
appears to necessitate plan-driven practices is criticality.

Figure 2: Developmental factors [adapted from

[9, 11]]

3.2. Case study limitations

The second author of this paper tested, coded, and

led the IBM team while participating as an action
researcher in this study. His intimate knowledge
potentially introduces some bias into the study.
However, his direct involvement significantly aided the
research because his detailed project knowledge provided
qualitative details and insights. The team knew the study

was occurring, so a Hawthorne effect was a concern.
However, the team was more concerned with completing
the project and was generally ambivalent about the case
study. An external team participated in part of the
product test, which should help remove some bias.

Some learning effects must be considered because
the comparison is made between two consecutive
releases. However, we sought to reduce internal validity
concerns by studying the same software project with a
team comprised largely of the same personnel. The new
release was approximately half the size of the old release
and had a smaller development team. Smaller projects
with smaller teams are often considered less complex.
However, the new release involved understanding and
updating a larger code base. The old release was
available for eight months before the new release was
made available in June 2003. Therefore, defects may
still be discovered for the new release. A proportion of
the defects discovered in field use of the new release can
be attributed to unmodified code of the old release; these
were counted as old release defects.

4. Framework/Results

This section explains the adherence and results

metric suites.

4.1. XP-am: Adherence metrics

Determining and recording the subset of practices

employed by a team is essential for comparison purposes.
Additionally, organizations may be interested in the
adherence to certain practices. For example, pair
programming and test-driven development have been
shown to improve quality [48, 50] and may be deemed
high-priority practices. Adherence metrics also enable
case study comparison, the study of XP practice
interaction, and the determination of contextually-based,
“safe” XP practice subsets. These metrics also provide
insight into whether a team has adopted XP’s core
values. The XP-am does not advocate high adherence as
a universal benefit for all projects.

This case study provides initial validation of the XP-
am metrics. The XP-am is comprised of both subjective
and objective measures as well as qualitative analysis
about the team’s use of XP practices. The Shodan
Adherence Survey (described fully in [27] and adapted
from [26]) is an in-process, subjective means of
gathering XP adherence information from team
members. The survey, answered anonymously via a
web-based application, contains 15 questions gauging the
extent to which each individual uses XP practices.
Survey respondents report the extent to which he/she
uses each practice on a scale from 0% (never) to 100%
(always). Periodic survey data can be used by teams for

in-process corrections based on degree of use, trends, and
variation between individuals. However, since the
Shodan survey is subjective, it is not advisable to
compare survey results across teams. Seven team
members took the survey for the old release, and six did
for the new release (this matches the number of full time
team members). The objective measures thus portray the
quantifiable adherence to XP practices for the old and
new releases.

We present the combined results of these adherence
metrics based upon three categories: planning (Table 6),
testing (Table 7), and coding (Table 8).

Table 6: Planning adherence metrics

Though the customer was remote, the team was

comfortable with their remote communication, feedback,
and responsiveness via e-mail, chat programs, phone, and
databases.

Table 7: Testing adherence metrics

Testing Metric Old New
Objective metrics
Test Coverage
(quickset)

30% of lines 46% of lines

Test Run
Frequency

< 10% 11%

Test Class to Story
Ratio

N/A 0.45

Test LOC / Source
LOC

< 0.30 0.42

Subjective
(Shodan)

Mean (std dev) Mean (std dev)

Test First Design 17% (11.2) 55% (22.2)
Automated Unit
Tests

43% (16.4) 67% (22.1)

Customer
Acceptance Tests

63% (25.6) 78% (6.9)

Test coverage of new and modified code was high,
but the measurement shown above is the average for the
entire component, including code that was not modified
or added. As such, this number underestimates the
testing effort in the new release. Test-run frequency
measures how often the automated tests are run. The
data shown was manually calculated and partially
estimated. Ideally, the measure should be automated,
and the value should be at least 1.0, indicating that each
team member runs the test suite at least once per day.
The automated test classes per user story ratio allows the
team to examine adherence to their goal of a test class for
every user story. The team’s goals for coverage and run
frequency were 60% and 90%, respectively. “Quickset”
is the set of automated unit tests each developer runs
several times a day before checking in code. Customer
acceptance tests were run manually.

Table 8: Coding adherence metrics

Coding Metric Old New
Objective metrics
Pairing Frequency 11% 48%
Inspection
Frequency

2% 3%

Solo Frequency 87% 49%
Subjective
(Shodan)

Mean (std dev) Mean (std dev)

Pair Programming 32% (15.0) 68% (14.6)
Refactoring 38% (11.6) 57% (14.9)
Simple Design 75% (10.5) 78% (6.9)
Collective
Ownership

58% (14.0) 83% (7.5)

Continuous
Integration

58% (18.8) 78% (13.4)

Coding Standards 87% (7.0) 82% (3.7)
Sustainable Pace 57% (12.5) 77% (9.4)
Metaphor 32% (30.7) 43% (18.9)

Pairing frequency was calculated by examining file

headers. In the program comment banner, the developers
indicated who worked on any file creation or
modification. Pairing frequency was calculated by
searching for these comments; ideally a more automated,
objective means of assessing pairing should be utilized.
For the new release, people were given a choice of
pairing, inspecting, or justifying why code was written
alone. To satisfy remote stakeholders accustomed to
traditional design artifacts, a Slim Design Up Front
(SDUF) template was used that included the user story,
test case, and design checklist.

Planning Metric Old New
Objective metrics
Release Length 10 months 5 months
Iteration Length Weekly Weekly
Requirements
added or removed
to Total Shipped
Ratio

N/A 0.23
13 added,
1 removed,
60 delivered

Subjective
(Shodan)

Mean (std dev) Mean (std dev)

Stand up meetings 72% (16.4) 90% (14.1)
Short Releases 78% (27.3) 77% (9.4)
Customer Access
/ Onsite Customer

60% (28.1) 87% (4.7)

Planning Game 75% (21.2) 85% (10.0)

4.2. XP-om: Outcome Measures

Of utmost importance to decision makers is whether

or not adopting XP practices aids in productively creating
a higher quality project. The IBM business-related
results are shown in Table 9, using a relative scale to
protect proprietary information.

Table 9: XP Outcome Measures (relative scale

with the old release at 1.0)
XP Result Metric Old New
Internal Code Structure (mean values)
 Methods per class
 Depth of inheritance tree
 Number of children
 Coupling
 Response for class
 Lines of code per class
McCabe Complexity

1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.96
0.96
1.55
1.01
0.99
0.98
0.74

Response to Customer Change (Ratio
(user stories in + out) /total)

N/A 0.23

Internally-Visible Quality (test
defects/KLOEC of code)

1.0 0.502

Externally-Visible Quality*
(defects/KLOEC of code 6 months after
release)

1.0 0.244

Productivity
 User stories / PM
 KLOEC / PM

1.0
1.0

1.34
1.7

Customer Satisfaction N/A High
Morale (via survey) 1.0 1.11

Internal Code Structure. Since Big Design Up Front

(BDUF) is not emphasized with XP, software developers
can be concerned with the resulting design of the
implemented code. We utilize CK metrics (discussed in
Section 2.2) to assess the code structure. Table 9
displays the difference of the CK metrics between
releases. With the exception of Number of Children, the
internal code structure stayed relatively constant. In all
cases, the mean values for these metrics did not exceed
industry-standard thresholds [24, 41]. The cohesion
metric of the CK suite was not computed due to lack of
support for the validity of this metric [7]. Finally, the
McCabe Complexity decreased.

Response to Customer Change. The number of user
stories added and removed based on customer
priority/preference change is important because it relates
to an XP team’s degree of flexibility or agility. Response
to Customer Change was not computed for the old
release due to lack of availability. However, anecdotally,
fewer requirements were added during the old release
than the new release.

Internally-visible Quality. Internal (pre-release)
quality improved by a factor of two. This metric was
based upon the defects identified by an external IBM
testing organization prior to release to the customer. For
the old release, 65 scenarios were tested; for the new
release, 96 were tested. Therefore, we assess that the
testing effort for the new release was at least as thorough
as that of the old release.

Externally-visible Quality. The new release’s six
month post-release defect density has improved by a
factor of four. The severity distributions of the defects
between the two releases are similar. However, a direct
comparison cannot be made because the severity scale
changed during the new release.

Productivity. The productivity calculation used both
user stories and lines of code (LOC) because neither
measure is perfect. LOC is precise but customers pay for
features, not LOC; the IBM team tries to reduce LOC via
code reuse and refactoring. A benefit of the user
stories/PM metric is it creates no extra work for the team,
but this metric has not been calibrated. Function points
were not used in this metric because they require use of a
trained specialist and one was not available. Function
points can be estimated from LOC, but the result can be
inaccurate [23].

Customer satisfaction. XP proponents profess that
customers are more satisfied with the resulting project
because the team produced what the customer actually
wanted, rather than what they had originally expressed
they wanted. In the future, we plan to author and
validate a customer satisfaction survey instrument. For
the IBM project, anecdotally the customer was very
satisfied with the team’s work.

Morale. Team morale was assessed via an
additional question placed on the Shodan Adherence
Survey. The question read, “How often can you say you
are enjoying your work?” The survey results indicated
an overall increase in morale as the team utilized more
XP practices.

5. Discussion and Future Work

The XP-EF framework provides informative

feedback utilizing streamlined process and project
metrics appropriate for a lightweight software process.
Software measurement is a challenging and time-
consuming task. Small software development teams
require a smaller, more manageable metrics set that
provides constructive feedback about their development
process. Our proposed metrics were comprehensive
enough for this software development team to evaluate
the efficacy of their XP practices, while not imposing
excessive burden. The framework provided constructive
feedback throughout development and allowed the team
to improve their adherence to XP practices. However,

we acknowledge much work remains to further validate
and extend this framework, particularly with regard to
the XP adherence metrics.

We observed that practitioners can adopt a “safe”
subset of XP practices despite warnings by XP advocates
of the essential dependencies between practices, as
supported by an interview study of 21 Canadian firms
performed by El Emam [17]. In the case of the IBM case
study team, some practices were used more than others.
Variations occurred due to individual preference and
corporate culture and constraints. We observed a steady
increase in XP use by the team as they began to see
perceived benefits of the process. The hybrid process
was both agile and successful.

Our findings suggest that agile/XP methodologies
can be successfully adopted in environments reliant on
traditional software methods. Though the team
members already considered themselves to be
“lightweight” and informal, the traditional process at
IBM was not and could not be totally abandoned. XP
was adapted to provide prescriptive process guidance to
the team while allowing them to maintain their desired
informal culture. The consequent compromise between
XP practices and existing methods generated a process
that met project deadlines and produced a higher quality
product. This case study advances the growing body of
XP knowledge and suggests that the hybridization of
agile and traditional methodologies is a viable middle
ground for companies who do not fit into either
archetype.

An active continuation of our research is refining
and validating our suite of objective metrics, focusing on
those metrics that can be automated. We are developing
a written survey instrument to assess customer
satisfaction. Quantitative studies, such as that outlined
by the XP-EF, can be enriched via qualitative research
[44]. We are currently piloting survey instruments that
can be used to collect qualitative information to examine
the “why” and the people aspects behind the quantitative
findings. We are currently replicating this study with
multiple industrial projects to compare the results.
Specifically, we are utilizing the structure of the XP-EF
to analyze the data of three completed case studies with
varying contexts. Additionally, we are commencing two
additional industrial case studies in 2004 that will also
utilize the XP-EF. Finally, we have adapted the XP-EF
for use in products development efforts that utilize
functional languages and are in the midst of a case study
with a small industrial team creating a compiler in
Haskell. We welcome interested researchers to do the
same. This family of case studies can be used to create
an Experience Factory [2] of XP efficacy knowledge.
Such research will also enable further validation of the
XP-EF framework and aid in evolving this benchmark
metric suite.

Acknowledgements

We wish to thank the IBM team for participating in

this case study. Additionally, the participants of the Data
Workshop at the XP/Agile Universe conference, Philip
Johnson, and the NCSU Software Engineering Reading
Group provided helpful feedback. This research was
supported by NCSU CACC Grant 02-02.

References

[1] V. Basili, G. Caldiera, and D. H. Rombach, "The Goal
Question Metric Paradigm," in Encyclopedia of Software
Engineering, vol. 2: John Wiley and Sons, Inc., 1994, pp. 528-
532.
[2] V. Basili, G. Caldiera, and H. D. Rombach, "The
Experience Factory," in Encycopedia of Software Engineering,
J. C. Marciniak, Ed.: John Wiley, 1994.
[3] V. Basili, "The Role of Experimentation: Past, Present,
Future (keynote presentation)," International Conference on
Software Engineering, 1996,
[4] V. Basili and S. Green, "Software Process Evolution at the
SEL," IEEE Software, vol. 11, pp. 58-66, July 1994.
[5] V. Basili and D. Weiss, "A Methodology for Collecting
Valid Software Engineering Data," IEEE Transactions on
Software Engineering, vol. 10, pp. 728-738, Nov. 1984.
[6] V. Basili, Shull, F.,Lanubile, F., "Building Knowledge
through Families of Experiments," IEEE Transactions on
Software Engineering, vol. Vol. 25, No.4, 1999.
[7] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation
of Object Orient Design Metrics as Quality Indicators," IEEE
Transactions on Software Engineering, vol. 21, pp. 751-761,
1996.
[8] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.
[9] B. Boehm and R. Turner, Balancing Agility and Discipline:
A Guide for the Perplexed. Boston, MA: Addison Wesley,
2003.
[10] B. Boehm, "Software Risk Management: Principles and
Practices," IEEE Software, pp. 32-41, January 1991.
[11] B. Boehm and R. Turner, "Using Risk to Balance Agile
and Plan-Driven Methods," IEEE Computer, vol. 36, pp. 57-66,
June 2003.
[12] J. Bowers, J. May, E. Melander, M. Baarman, and A.
Ayoob, "Tailoring XP for Large System Mission-Critical
Software Development," Extreme Programming/Agile
Universe, Chicago, IL, 2002,
[13] D. T. Campbell and J. C. Stanley, Experimental and
Quasi-Experimental Design for Research. Boston: Houghton
Mifflin Co., 1963.
[14] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for
Object Oriented Design," IEEE Transactions on Software
Engineering, vol. 20, 1994.
[15] N. I. Churcher and M. J. Shepperd, "Comments on 'A
Metrics Suite for Object-Oriented Design'," IEEE Transactions
on Software Engineering, vol. 21, pp. 263-5, 1995.
[16] A. Cockburn, Agile Software Development. Reading,
Massachusetts: Addison Wesley Longman, 2001.

[17] K. El Emam, "Finding Success in Small Software
Projects," Agile Project Management, vol. 4.
[18] K. El Emam, "A Methodology for Validating Software
Product Metrics," National Research Council of Canada,
Ottawa, Ontario, Canada NCR/ERC-1076, June 2000.
[19] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole Pub Co., 1998.
[20] R. Grady, Practical Software Metrics for Project
Management and Process Improvement. Englewood Cliffs, NJ:
Prentice Hall, 1992.
[21] J. Grenning, "Launching Extreme Programming at a
Process-Intensive Company," IEEE Software, vol. 18, pp. 27-
33, 2001.
[22] ISO/IEC, "DIS 14598-1 Information Technology -
Software Product Evaluation," 1996.
[23] C. Jones, Software Assessments, Benchmarks, and Best
Practices. Boston, MA: Addison Wesley, 2000.
[24] S. Kan, Metrics and Models in Software Quality
Engineering: Addison Wesley, 2003.
[25] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W.
Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg,
"Preliminary Guidelines for Empirical Research in Software
Engineering," IEEE Transactions on Software Engineering,
vol. 28, pp. 721-733, 2002.
[26] W. Krebs, "Turning the Knobs: A Coaching Pattern for
XP Through Agile Metrics," Extreme Programming/Agile
Universe, Chicago, IL, 2002,
[27] W. Krebs, L. Layman, and L. Williams, "The Extreme
Programming Evaluation Framework Version 1.1," North
Carolina State University Department of Computer Science
TR-2003-17, 2003.
[28] M. Lippert, P. Becker-Pechau, H. Breitling, J. Koch, A.
Kornstädt, S. Roock, A. Schmolitzky, H. Wolf, and H.
Züllighoven, "Developing Complex Projects Using XP with
Extensions," IEEE Computer, vol. 36, pp. 67-73, June 2003.
[29] M. Marchesi and G. Succi, "Extreme Programming
Examined," Boston: Addison Wesley, 2001.
[30] M. Marchesi, G. Succi, D. Wells, and L. Williams,
"Extreme Programming Perspectives," in XP Series, K. Beck,
Ed. Boston: Addison Wesley, 2002.
[31] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J.
Dean, and F. Hall, Practical Software Measurement: Objective
Information for Decision Makers. Boston, MA: Addison
Wesley, 2002.
[32] M. M. Müller and W. F. Tichy, "Case Study: Extreme
Programming in a University Environment," 23rd International
Conference on Software Engineering (ICSE2001), May 2001,
537-544.
[33] O. Murru, R. Deias, and G. Mugheddue, "Assessing XP at
a European Internet Company," IEEE Software, vol. 20, pp. 37-
43, May-June 2003.
[34] R. Offen and R. Jeffery, "Establishing Software
Measurement Programs," IEEE Software, pp. 45-53,
March/April 1997.
[35] M. C. Paulk, B. Curtis, and M. B. Chrisis, "Capability
Maturity Model for Software Version 1.1," Software
Engineering Institute CMU/SEI-93-TR, February 24, 1993.

[36] C. Poole and J. W. Huisman, "Using Extreme
Programming in a Maintenance Environment," IEEE Software,
vol. 18, pp. 42-50, Nov/Dec 2001.
[37] C. Potts, "Software Engineering Research Revisited,"
IEEE Software, pp. 19-28, September 1993.
[38] J. Rasmussen, "Introducing XP into Greenfield Projects:
Lessons Learned," IEEE Software, vol. 20, pp. 21-28, May-
June 2003.
[39] D. J. Reifer, "How to Get the Most out of Extreme
Programming/Agile Methods," 2nd XP and 1st Agile Universe
Conference, Chicago, IL, August 2002, 185-196.
[40] H. Robinson and H. Sharp, "XP Culture: Why the twelve
practices both are and are not the most significant thing," Agile
Software Development, Salt Lake City, UT, 2003, 12-21.
[41] L. Rosenberg, "Applying and Interpreting Object Oriented
Metrics," NASA Software Assurance Technology Center April
1998.
[42] N. Schneidewind, "Methodology for Validating Software
Metrics," IEEE Transactions on Software Engineering, vol. 18,
pp. 410-422, May 1992.
[43] P. Schuh, "Recovery, Redemption, and Extreme
Programming," IEEE Software, vol. 18, pp. 34-41, Nov/Dec
2001.
[44] C. B. Seaman, "Qualitative Methods in Empirical Studies
of Software Engineering," IEEE Transactions on Software
Engineering, vol. 25, pp. 557-572, 1999.
[45] S. E. Sim, S. Easterbrook, and R. C. Holt, "Using
Benchmarking to Advance Research: A Challenge to Software
Engineering," International Conference on Software
Engineering, Portland, 2003, 74-83.
[46] R. Subramanyam and M. S. Krishnan, "Empirical
Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects," IEEE
Transactions on Software Engineering, vol. 29, pp. 297-310,
April 2003.
[47] D. Wells and L. Williams, "Extreme Programming and
Agile Methods -- XP/Agile Universe 2002," in Lecture Notes in
Computer Science. Berlin: Springer-Verlag, 2002.
[48] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries,
"Strengthening the Case for Pair-Programming," in IEEE
Software, vol. 17, 2000, pp. 19-25.
[49] L. Williams, W. Krebs, and L. Layman, "Extreme
Programming Evaluation Framework for Object-Oriented
Languages -- Version 1.1," North Carolina State University
Department of Computer Science TR-2003-20, 2003.
[50] L. Williams, E. M. Maximilien, and M. Vouk, "Test-
Driven Development as a Defect-Reduction Practice," IEEE
International Symposium on Software Reliability Engineering,
Denver, CO, 2003,
[51] L. Williams, G. Succi, M. Stefanovic, and M. Marchesi,
"A Metric Suite for Evaluating the Effectiveness of an Agile
Methodology," in Extreme Programming Perspectives, M.
Marchesi, G. Succi, D. Wells, and L. Williams, Eds. Boston,
MA: Addison Wesley, 2003.
[52] W. Wood and W. Kleb, "Exploring XP for Scientific
Research," IEEE Software, vol. 20, pp. 30-36, May-June 2003.
[53] M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," IEEE Computer, vol. 31,
pp. 23-31, May 1998.

